

Library Database System

Group #15

Group Members: Jack Peachey, Tzu Wang, Zhao-An Wang, Yuzo Makitani

Table of Contents

Table of Contents ... 2

Statement on Teamwork .. 3

Section 1a. Conceptual Schema (ERD) ... 3

Summary of Conceptual Schema ... 3

Assumptions ... 4

Justification of Entities and Attributes ... 5

Section 1b. Relational Database Schema ... 9

Section 1c. Normalized Design ... 13

Section 2a. List of all Create Table Commands .. 17

Section 2b. Sample Test Data ... 19

Section 2c. Four View Definitions ... 25

Section 2d. Twelve SQL Queries with Output Strings ... 30

Section 2e. Testing Table Constraints (Optional) ... 36

Bibliography ... 38

Statement on Teamwork

All group members of this project, Jack Peachey, Tzu Wang, Zhao-An Wang, and Yuzo
Makitani, certify that we worked together equally on this coursework and that all members
deserve the same grade.

Section 1a. Conceptual Schema (ERD)

Summary of Conceptual Schema

We chose five entities to represent the library database system:

• Member: Stores all members, both student and staff. It tracks the member name,
member type, number of active loans, payments received, and suspension status.
Members create reservations, make loans, and pay fines.

• Resource: Keeps a record of all resources in the library. It tracks the resource name,
type of resource, its allowed loan period, and its class number. Resources can be a
name of a book.

• Copy: A separate entity where each copy is associated with a resource. It tracks the
copy number, location, and availability. Copies are the physical copy for a particular
book name.

• Reservation: Stores reservations, the date and time the reservation was made, whether
the reservation is active or archived, and the remaining chances a member has to pick
up the resource. Reservations reserve resources and notify members of available
resources.

• Loan: An entity which tracks loans and fines. It stores the checkout date and time, status
of the loan, and fine amount. Loans loan out copies.

Justification of each entity and the placement of key attributes such as floor/shelf and fines is
justified in the Justification of Entities section below.

Assumptions

We have made the following assumptions for our DBMS:

• A member can only request a resource and has no control over which copy of the
resource is loaned to them. This is why Reservation is linked to Resource, while the
Loan is linked to Copy.

• A member must pay off the entire fine amount associated with a loan at once. There is
no partial payment allowed. This is why there is no separate Fine entity and instead the
fine amount is tracked for each loan.

• A reservation is created by requesting a resource online or at a library kiosk.
• A loan is created when the item is physically checked out at the library counter.
• When a member checks out a copy of the resource from the library, the reservation

status becomes archived. In the future if memory or query time is a concern, the
reservation can be deleted instead of becoming archived.

• A reserved resource cannot be checked out by anyone other than the member who
reserved the resource, if there are no more spare copies. This means that the
application layer will allow members to check out copies for a particular resource as long
as:

𝑁!"!#$!%$& ()*#&+ > 𝑁!(,#"& -&+&-"!,#).+

• If a member requests a resource and it isn’t currently available, a reservation is
generated by the application.

• When a member checks out a resource at the counter, a request is made of the
resource. If a member is not suspended, has not exceeded their quota of resources, and
reservation criteria specified above are met, the system directly generates a loan,
bypassing the reservation system.

• There was no requirement specified for limiting the number of reservations a member
can make.

Justification of Entities and Attributes

Justification of member entity

A member entity is required to store distinct information about the member such as their name,
and the member’s privileges such as member type and their suspension status.

We chose to keep students and staff as a single entity because they store the same attributes.
For both students and staff, we need to track their name, type, resources loaned, how much
payment has been received, and their suspension status. In this system, the only difference
between students and staff are that students can borrow up to 5 concurrent resources, while
staff can borrow up to 10.

There is a special case where a person is both student and staff, such as a Teachers Assistant.
In order to eliminate ambiguity of what permissions a student/staff member has, we have
allocated three options for the attribute Member_Type: student, staff, and student_staff. We
have assumed that student_staff have the same permissions as staff, but this can be changed
by the customer in the application layer.

Advantage of storing member type as an attribute instead of separating student and staff
entities

We store Member_Type as an attribute within the Member entity because it is a more robust
and future-proofed solution than having separate entities for each member type. This allows the
customer to add another member type in the future without adding another table. For example,
the customer may want to separate the students into undergraduate and postgraduate member
types in the future and allow them to access only certain resources in the library. A real-life
example is at the Queen Mary library, where postgraduates badge into postgraduate only study
rooms. Another scenario is the library adds another member type called library staff and gives
them access to a longer checkout time than ordinary staff members as a worker benefit.

Justification of payment received attribute

We include a payment received attribute in members as a convenient way to track total
payments received from a member. In our conversations with Chathura, it was recommended
we keep a payment received attribute as we do not have fines. Note that in the physical
implementation, fine payments are directly updated into the Loan_Active table, while past fines
are kept in the Loan_Archive table. This means Fine from Loan_Archive can be queried and
Fine from Loan_Active subtracted from it to get the same Payment_Received in Member:

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑  =  𝑆𝑢𝑚(𝐹𝑖𝑛𝑒 𝑖𝑛 𝐿𝑜𝑎𝑛 𝐴𝑟𝑐ℎ𝑖𝑣𝑒)  −  𝑆𝑢𝑚(𝐹𝑖𝑛𝑒 𝑖𝑛 𝐿𝑜𝑎𝑛 𝐴𝑐𝑡𝑖𝑣𝑒)

Justification of resource entity

The resource entity is required to store distinct information about the various resources
available to be loaned out by the library, such as their available loan period.

In this entity, we track unique information about each resource: the type of resource it is (book,
DVD, video, or CD), its available loan period (2 days, 2 weeks, or library only), and its class
number.

One can make the argument that we should have another attribute called class name. This is
definitely feasible, but we have excluded the class name because only class number was part of
the requirement.

If we were to include class name, it would be a part of a separate entity with class number as
the PK, and the class name as the dependent attribute of class number. Class name cannot be
included together with class number inside the resource entity because that would break 3NF,
which states there must be no transitive dependencies in the relation.

Justification of copy entity

The copy entity is required to store distinct information about each individual copy of a resource,
namely its number, location, availability, the number of times it has been checked out, and the
date it will become available.

Justification of separating copy and resource entities

The copy entity must exist separate of the resource entity because members must reserve
resources (such as the book “Harry Potter and the Chamber of Secrets”) but need to loan
individual copies (such as the copy “Harry Potter and the Chamber of Secrets Copy #4). In our
discussions with Dr. Stockman, it was mentioned explicitly that members should not worry about
which copy to choose when making a reservation. With copy and resource entities separated,
the system makes the decision for which copy to allocate to the member.

Advantage of tracking a location inside the copy instead of resource

We track the location of a copy (its floor and shelf number) as attributes inside Copy instead of
in the Resource because of instances where copies are not organized next to each other. The
most prominent example which illustrates this is encyclopedia collections. A library may carry
multiple copies of an encyclopedia, but it will usually group the books together by copy instead
of by resource. Furthermore, encyclopedias may be so large that even one version can take up
multiple shelves inside a library.

To illustrate this example, an Encyclopedia (E) may be divided into 7 books (i~vii), with 2 copies
(1 or 2) each. The encyclopedia can be grouped as follows:

Shelf 18: Ei-1, Eii-1, Eiii-1, Eiv-1, Ev-1, Evi-1, Evii-1

Shelf 19: Ei-2, Eii-2, Eiii-2, Eiv-2, Ev-2, Evi-2, Evii-2

In this example, Evii-1 and Evii-2 are the same resource, but each copy is located on a different
shelf. This means tracking location by copy is a more truthful representation of the physical
location than tracking a resource which may be spread out over multiple locations.

Justification of loan entity

The loan entity is required to store distinct information about who borrowed which copy of a
resource, when the resource must be returned, and how much fine is owed for a particular loan.
The loan entity allows a member to borrow a particular copy of a resource while the reservation
entity allows a member to make a reservation of a resource without needing to specify the copy
they want to reserve.

Advantage of tracking fine amount within loan entity

The fine amount is tracked directly inside the loan entity. This treats all loans as a fine of default
value zero. The advantage of this system is that it eliminates the need for a separate fine table,
which can take up extra memory because it will need to store foreign keys Member_ID and
Loan_ID. However, if few members have fines, creating a separate Fine entity can be
advantageous to speed up the query process of fines and reduce the extra memory required by
storing a fine value for all loans.

The fine attribute is not a derived attribute because it is dependent on two factors: the fine
incurred by the member for a particular loan, and the amount paid off by the member (in our
case, must be exactly the fine amount):

𝐹𝑖𝑛𝑒  =  $1.00 ⋅ 𝐷𝑎𝑦𝑠 𝑂𝑣𝑒𝑟𝑑𝑢𝑒 − 𝐴𝑚𝑜𝑢𝑛𝑡 𝑃𝑎𝑖𝑑 𝑏𝑦 𝑀𝑒𝑚𝑏𝑒𝑟	

Where:

𝐷𝑎𝑦𝑠 𝑂𝑣𝑒𝑟𝑑𝑢𝑒  =  (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑎𝑡𝑒 𝑇𝑖𝑚𝑒  −  𝐶ℎ𝑒𝑐𝑘𝑜𝑢𝑡 𝐷𝑎𝑡𝑒 𝑇𝑖𝑚𝑒)  −  𝐿𝑜𝑎𝑛 𝑃𝑒𝑟𝑖𝑜𝑑

The amount paid by member is an input the DBMS receives from the application layer, therefore
not derivable. However, the days overdue and therefore the fine incurred by a member can be
derived by the above formula.

Loan Archive vs Loan Active

There is no differentiation between Loan Archive and Loan Active in the ERD, because Loan
Archive is not a necessary table. Loan Archive is implemented in the physical level (part 2 of
coursework) to optimize query speed on active loans.

A loan is active if it has not been returned or a fine has not been paid off yet. When a fine is paid
off and the copy is returned, the loan is removed from the loan active table. However, the loan

archive table will maintain the fine – this enables us to keep a history of past loans and fine
amounts (like Order History on Amazon).

Justification of reservation entity

The reservation entity is required to store distinct information about when a reservation was
made, its status, and how many times a member has left remaining to check out a resource.
Unlike the loan entity, it connects a member to a resource instead of an individual copy of a
resource. The reservation entity allows the system to allocate resources to members and notify
members when resources become available.

Reservation Status

A reservation is active by default until all remaining chances are exhausted or the member
cancels their reservation. Inactive reservations are archived for now, but this can be changed to
delete inactive reservations in the future if the customer does not have a need to store them. If
they need to be stored but become large, we can create a reservation archive table in the
future.

Section 1b. Relational Database Schema

Step 1: One to Many Relation

• Moved the PK of Resource (Resource_ID) into Copy as a FK
• Since Copy is a weak entity, Resource_ID is used as part of the composite PK

Step 2: One to Many Relation

• Moved the PK of Member (Member_ID) into Reservation as a FK

Step 3: One to Many Relation

• Moved the PK of Resource (Resource_ID) into Reservation as a FK

Step 4: One to Many Relation

• Moved the PK of Member (Member_ID) into Loan as a FK

Step 5: One to One Relation

• Moved the PKs of Copy (Resource_ID, Copy_No) into Loan as FKs

Relational Schema After Mapping

MEMBER(Member_ID {PK}, Member_Name, Member_Type, Resources_Loaned,
Payment_Received)
RESERVATION(Reservation ID {PK}, Resource_ID {FK}, Member_ID {FK},
Reservation_Date_Time, Reservation_Status, Remaining_Chances)
LIB_RESOURCE(Resource_ID {PK}, Resource_Name, Resource_Type, Loan_Period,
Class_No)
COPY(Resource_ID_Copy_No {PK}, Resource_ID {FK}, Copy_No, Location, Availability,
Checkout_Counter)
LOAN(Loan_ID {PK}, Resource_ID_Copy_No {FK}, Member_ID {FK}, Checkout_Date_Time,
Loan_Status, Fine_Amount)

Section 1c. Normalized Design

1NF - Identify and remove repeating groups (multi-valued attributes)

Divided the following attributes into their atomic attributes:

• Member Name into Member_First_Name and Member_Last_Name
• Location into Floor_No and Shelf_No
• Note that Resource_ID, Resource_ID_Copy_No, Reservation_ID, and Loan_ID are

tracked as candidate keys

Blue font indicates updated values after normalization. Diagram is used for clarity, with relational
schema at bottom of the page.

UNIVERSAL RELATION (Member_ID, First_Name, Last_Name, Member_Type,
Resources_Loaned, Payment_Received, Suspension_Status,
Reservation ID, Member_ID {FK}, Reservation_Date_Time, Reservation_Status,
Remaining_Chances,
Resource_ID, Resource_Name, Resource_Type, Loan_Period, Class_No, Class_Name,
Resource_ID, Copy_No, Floor_No, Shelf_No, Availability,
Loan_ID, Checkout_Date_Time, Loan_Status, Fine_Amount)

2NF - Every other attribute must be functionally dependent on one primary key

Established four relations which ensure each attribute is functionally dependent on only one
primary key

• From Member_ID, we can determine the member's first name, last name, membership
type, total payment received, and suspension status

• From Reservation_ID, we can determine the reservation date and time, reservation
status, and how many remaining chances the member has left to pick up the book

• From Loan_ID, we can determine the checkout date and time, loan status, and the fine
amount

• From Resource_ID, Copy_ID, we can determine the resource name, type, maximum
loan period, class number and name, its floor and shelf, and availability

MEMBER (Member_ID {PK}, First_Name, Last_Name, Member_Type, Resources_Loaned,
Payment_Received, Suspension_Status)
RESERVATION (Reservation ID {PK}, Resource_ID {FK}, Member_ID {FK},
Reservation_Date_Time, Reservation_Status, Remaining_Chances)
COPY (Resource_ID, Copy_No {PK}, Copy_No, Location, Availability, Resource_Name,
Resource_Type, Loan_Period, Class_No)
LOAN (Loan_ID {PK}, Resource_ID {FK}, Copy_No {FK}, Member_ID {FK},
Checkout_Date_Time, Loan_Status, Fine_Amount)

3NF - Eliminate transitive dependencies

Separated the transitive dependencies Resource_Name, Type, Loan_Period, Class_No, and
Class_Name, which are directly dependent on Resource_ID but only transitively dependent on
Resource_ID, Copy_ID

• We do not need information about the copy number to determine the name, type,
maximum loand period, and class details about a resource

Separated the transitive dependency Class_Name which is directly dependent on Class_No and
only transitively dependent on Resource_ID

• Note that Class_Name is not a part of our relational schema because it is not a part of
the coursework requirements to track Class_Name - shown here to illustrate 3NF

MEMBER (Member_ID {PK}, First_Name, Last_Name, Member_Type, Resources_Loaned,
Payment_Received, Suspension_Status)
RESERVATION (Reservation ID {PK}, Resource_ID {FK}, Member_ID {FK},
Reservation_Date_Time, Reservation_Status, Remaining_Chances)
COPY (Resource_ID, Copy_No {PK}, Resource_ID {FK}, Copy_No, Location, Availability)
LOAN (Loan_ID {PK}, Resource_ID_Copy_No {FK}, Member_ID {FK}, Checkout_Date_Time,
Loan_Status, Fine_Amount)
LIB_RESOURCE (Resource_ID {PK}, Resource_Name, Type, Loan_Period, Class_No)
CLASS (Class_No {PK}, Class_Name)

Final relational schema after relational mapping and normalization

• Removed the Class relation because class name is not specified as a requirement in the
coursework

• Loan_Active schema is added for the purpose of efficiency in the physical system.
Loan_Active will hold only active loans while Loan_Archive stores all loans, both active
and inactive. This enables current loan queries to be executed quickly on Loan_Active

MEMBER (Member_ID {PK}, First_Name, Last_Name, Member_Type, Resources_Loaned,
Payment_Received, Suspension_Status)
RESERVATION (Reservation ID {PK}, Resource_ID {FK}, Member_ID {FK},
Reservation_Date_Time, Reservation_Status, Remaining_Chances)
LIB_RESOURCE (Resource_ID {PK}, Resource_Name, Type, Loan_Period, Class_No)
COPY (Resource_ID, Copy_No {PK}, Resource_ID {FK}, Copy_No, Location, Availability)
LOAN_ARCHIVE (Loan_ID {PK}, Resource_ID_Copy_No {FK}, Member_ID {FK},
Checkout_Date_Time, Loan_Status, Fine_Amount)
LOAN_ACTIVE (Loan_ID {PK}, Resource_ID_Copy_No {FK}, Member_ID {FK},
Checkout_Date_Time, Loan_Status, Fine_Amount)

Section 2a. List of all Create Table Commands

CREATE TABLE MEMBER(
 MEMBER_ID VARCHAR2(10) PRIMARY KEY,
 MEMBER_TYPE VARCHAR2(15) CONSTRAINT CHECK_MEMBER_TYPE CHECK
(MEMBER_TYPE IN ('student', 'staff', 'student_staff')),
 RESOURCES_LOANED NUMBER(2, 0),
 PAYMENT_RECEIVED NUMBER(4, 0),
 SUSPENSION_STATUS NUMBER(1, 0) CONSTRAINT CHECK_SUSPENSION_STATUS
CHECK (SUSPENSION_STATUS BETWEEN 0 AND 1),
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(20),
 CONSTRAINT CHECK_RESOURCES_LOANED CHECK((MEMBER_TYPE = 'student' AND
RESOURCES_LOANED <= 5) OR
 ((MEMBER_TYPE = 'staff' OR MEMBER_TYPE = 'student_staff') AND
RESOURCES_LOANED <= 10))
);

CREATE TABLE LIB_RESOURCE(
 RESOURCE_ID VARCHAR2(10) PRIMARY KEY,
 RESOURCE_NAME VARCHAR2(50),
 RESOURCE_TYPE VARCHAR2(10),
 LOAN_PERIOD NUMBER(2),
 CLASS_NO NUMBER(5, 0),
 CONSTRAINT CHECK_LOAN_PERIOD CHECK (LOAN_PERIOD >= 0 AND
LOAN_PERIOD <= 14)
);

CREATE TABLE COPY(
 COPY_NO NUMBER(3, 0),
 RESOURCE_ID VARCHAR2(10),
 FLOOR NUMBER(2, 0),
 SHELF NUMBER(3, 0),
 AVAILABILITY NUMBER(1, 0) CONSTRAINT CHECK_AVAILABILITY CHECK
(AVAILABILITY BETWEEN 0 AND 1),
 PRIMARY KEY(COPY_NO, RESOURCE_ID),
 CONSTRAINT FK_RESOURCE FOREIGN KEY (RESOURCE_ID) REFERENCES
LIB_RESOURCE(RESOURCE_ID)
);

CREATE TABLE LOAN_ACTIVE(
 LOAN_ID VARCHAR2(10) PRIMARY KEY,
 MEMBER_ID VARCHAR2(10),
 CHECKOUT_DATE_TIME TIMESTAMP,
 LOAN_STATUS NUMBER(1, 0) CONSTRAINT CHECK_LOAN_STATUS CHECK
(LOAN_STATUS BETWEEN 0 AND 1),

 FINE_AMOUNT NUMBER(4, 0),
 COPY_NO NUMBER(3, 0),
 RESOURCE_ID VARCHAR2(10),
 CONSTRAINT FK_MEMBER_ID FOREIGN KEY (MEMBER_ID) REFERENCES
MEMBER(MEMBER_ID),
 CONSTRAINT FK_RESOURCE_ID_COPY_NO FOREIGN KEY (COPY_NO,
RESOURCE_ID) REFERENCES COPY(COPY_NO, RESOURCE_ID)
);

CREATE TABLE LOAN_ARCHIVE(
 LOAN_ID VARCHAR2(10) PRIMARY KEY,
 MEMBER_ID VARCHAR2(10),
 CHECKOUT_DATE_TIME TIMESTAMP,
 LOAN_STATUS NUMBER(1, 0) CONSTRAINT CHECK_LOAN_STATUS_2 CHECK
(LOAN_STATUS BETWEEN 0 AND 1),
 FINE_AMOUNT NUMBER(4, 0),
 COPY_NO NUMBER(3, 0),
 RESOURCE_ID VARCHAR2(10),
 CONSTRAINT FK_MEMBER_ID_2 FOREIGN KEY (MEMBER_ID) REFERENCES
MEMBER(MEMBER_ID),
 CONSTRAINT FK_RESOURCE_ID_COPY_NO_2 FOREIGN KEY (COPY_NO,
RESOURCE_ID) REFERENCES COPY(COPY_NO, RESOURCE_ID)
);

CREATE TABLE RESERVATION(
 RESERVATION_ID VARCHAR2(10) PRIMARY KEY,
 RESERVATION_DATE_TIME TIMESTAMP,
 RESERVATION_STATUS NUMBER(1, 0) CONSTRAINT CHECK_RESERVATION_STATUS
CHECK (RESERVATION_STATUS BETWEEN 0 AND 1),
 REMAINING_CHANCES NUMBER(1, 0) CONSTRAINT CHECK_REMAINING_CHANCES
CHECK (REMAINING_CHANCES >= 0 AND REMAINING_CHANCES <= 3),
 MEMBER_ID VARCHAR2(10),
 RESOURCE_ID VARCHAR2(10),
 CONSTRAINT FK_RESOURCE_ID_RES FOREIGN KEY (RESOURCE_ID) REFERENCES
LIB_RESOURCE(RESOURCE_ID),
 CONSTRAINT FK_MEMBER_ID_RES FOREIGN KEY (MEMBER_ID) REFERENCES
MEMBER(MEMBER_ID)
);

Section 2b. Sample Test Data

Table Attribute Permitted Values
Member Member_ID Unique ID

First_Name String
Last_Name String
Member_Type Staff, student, or student_staff
Resources_Loaned 0 ~ 5 (students), 0 ~ 10 (staff and student_staff)
Payment_Received 0~9999 ($)
Suspension Status 0 (active), 1 (suspended)

Lib_Resource Resource_ID Unique ID
Resource_Name String
Type Book, DVD, Video, or CD
Loan_Period 0 (library only), 2, or 14 days
Class_No Number

Copy Resource ID Unique ID
Copy_No 0~999
Floor NO. 0~99
shelf NO. 0~999
Availability 0 (unavailable), 1 (available)

Loan_Archive Loan ID Unique ID
Member ID Unique ID
Check Out Datetime yyyy/mm/dd hh:mi:ss
Loan Status 0 (inactive), 1 (active)
Fine Amount 0~9999 ($)
Copy NO. 0~999
Resource ID Unique ID

Loan_Active Loan ID Unique ID
Member ID Unique ID
Check Out Datetime yyyy/mm/dd hh:mi:ss
Loan Status 0 (inactive), 1 (active)
Fine Amount 0~9999 ($)
Copy NO. 0~999
Resource ID Unique ID

Reservation Reservation ID Unique ID
Reservation Date Time yyyy/mm/dd hh:mi:ss
Reservation Status 0 (cancelled), 1 (active)
Remaining Chances 0 (canceled) ~ 3 (default value)
Member ID Unique ID
Resource ID Unique ID

INSERT ALL
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('A123456789', 'staff', 0, 3, 0, 'Yuzo', 'Makitani')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('B234567890', 'staff', 2, 0, 1, 'Jeff', 'Wang')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('C345678901', 'staff', 2, 3, 0, 'Rick', 'M')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('D456789012', 'student_staff', 3, 5, 1, 'Jack', 'Peachy')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('E567890123', 'student_staff', 1, 10, 0, 'Linda', 'L')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('F678901234', 'student_staff', 2, 0, 0, 'Denise', 'H')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('G789012345', 'student', 0, 0, 0, 'Joel', 'Wang')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('H890123456', 'student', 2, 0, 0, 'Lia', 'W')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('I901234567', 'student', 1, 0, 0, 'Wallis', 'L')
 INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME)
VALUES('J012345678', 'student', 0, 0, 0, 'Steve', 'J')
SELECT * FROM dual;

INSERT ALL
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('123456789A', 'AAA', 'Book', 14, 0)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('234567890B', 'BBB', 'Book', 0, 1)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('345678901C', 'CCC', 'Video', 14, 1)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('456789012D', 'DDD', 'Video', 2, 50)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('567890123E', 'EEE', 'DVD', 2, 32)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('678901234F', 'FFF', 'DVD', 0, 32)

 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('789012345G', 'GGG', 'CD', 14, 18)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('890123456H', 'HHH', 'CD', 14, 0)
 INTO LIB_RESOURCE (RESOURCE_ID, RESOURCE_NAME , RESOURCE_TYPE,
LOAN_PERIOD, CLASS_NO) VALUES('000000000Z', 'ZZZ', 'Book', 2, 50)
SELECT * FROM dual;

INSERT ALL
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'123456789A', 0, 0, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'123456789A', 0, 0, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (2,
'123456789A', 0, 1, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'234567890B', 1, 2, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'234567890B', 1, 2, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'345678901C', 1, 3, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'456789012D', 1, 4, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'456789012D', 1, 4, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (2,
'456789012D', 1, 4, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (3,
'456789012D', 1, 5, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'567890123E', 2, 3, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'567890123E', 2, 3, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'678901234F', 2, 3, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'789012345G', 2, 3, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'789012345G', 2, 4, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (2,
'789012345G', 2, 4, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'890123456H', 3, 0, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (1,
'890123456H', 3, 0, 0)

 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (2,
'890123456H', 3, 1, 1)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (3,
'890123456H', 3, 1, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (4,
'890123456H', 3, 1, 0)
 INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES (0,
'000000000Z', 4, 0, 1)
SELECT * FROM dual;

INSERT ALL
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L0', 'B234567890',
TIMESTAMP '2023-10-01 09:00:00', 1, 45, 0, '890123456H')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L1', 'D456789012',
TIMESTAMP '2023-10-01 10:00:00', 1, 45, 1, '890123456H')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L2', 'A123456789',
TIMESTAMP '2023-11-01 09:00:00', 0, 3, 0, '123456789A')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L3', 'B234567890',
TIMESTAMP '2023-11-02 10:00:00', 0, 0, 0, '345678901C')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L4', 'C345678901',
TIMESTAMP '2023-11-03 11:00:00', 0, 2, 0, '456789012D')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L5', 'D456789012',
TIMESTAMP '2023-11-04 12:00:00', 0, 2, 0, '567890123E')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L6', 'E567890123',
TIMESTAMP '2023-11-05 13:00:00', 0, 0, 0, '789012345G')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L7', 'B234567890',
TIMESTAMP '2023-11-06 09:00:00', 1, 10, 2, '123456789A')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L8', 'C345678901',
TIMESTAMP '2023-11-19 08:00:08', 1, 0, 0, '345678901C')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L9', 'C345678901',
TIMESTAMP '2023-11-19 08:00:08', 1, 9, 0, '456789012D')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L10', 'D456789012',
TIMESTAMP '2023-11-20 13:19:20', 1, 8, 1, '456789012D')

 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L11', 'D456789012',
TIMESTAMP '2023-11-21 09:00:00', 1, 7, 1, '567890123E')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L12', 'E567890123',
TIMESTAMP '2023-11-22 11:11:11', 1, 10, 0, '789012345G')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L13', 'F678901234',
TIMESTAMP '2023-11-23 19:00:19', 1, 0, 1, '789012345G')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L14', 'F678901234',
TIMESTAMP '2023-11-23 20:00:00', 1, 0, 3, '890123456H')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L15', 'H890123456',
TIMESTAMP '2023-11-24 02:02:02', 1, 0, 4, '890123456H')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L16', 'H890123456',
TIMESTAMP '2023-11-25 07:07:07', 1, 0, 0, '123456789A')
 INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L17', 'I901234567',
TIMESTAMP '2023-11-26 07:07:57', 1, 0, 1, '123456789A')
SELECT * FROM dual;

INSERT ALL
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L0', 'B234567890', TIMESTAMP
'2023-10-01 09:00:00', 1, 45, 0, '890123456H')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L1', 'D456789012', TIMESTAMP
'2023-10-01 10:00:00', 1, 45, 1, '890123456H')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L7', 'B234567890', TIMESTAMP
'2023-11-06 09:00:00', 1, 10, 2, '123456789A')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L8', 'C345678901', TIMESTAMP
'2023-11-19 08:00:08', 1, 0, 0, '345678901C')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L9', 'C345678901', TIMESTAMP
'2023-11-19 08:00:08', 1, 8, 0, '456789012D')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L10', 'D456789012', TIMESTAMP
'2023-11-20 13:19:20', 1, 5, 1, '456789012D')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L11', 'D456789012', TIMESTAMP
'2023-11-21 09:00:00', 1, 7, 1, '567890123E')

 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L12', 'E567890123', TIMESTAMP
'2023-11-22 11:11:11', 1, 0, 0, '789012345G')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L13', 'F678901234', TIMESTAMP
'2023-11-23 19:00:19', 1, 0, 1, '789012345G')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L14', 'F678901234', TIMESTAMP
'2023-11-23 20:00:00', 1, 0, 3, '890123456H')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L15', 'H890123456', TIMESTAMP
'2023-11-24 02:02:02', 1, 0, 4, '890123456H')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L16', 'H890123456', TIMESTAMP
'2023-11-25 07:07:07', 1, 0, 0, '123456789A')
 INTO LOAN_ACTIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME, LOAN_STATUS,
FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES ('L17', 'I901234567', TIMESTAMP
'2023-11-26 07:07:57', 1, 0, 1, '123456789A')
SELECT * FROM dual;

INSERT ALL
 INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R1', TIMESTAMP '2023-11-20 08:00:00', 0, 3, 'F678901234', '345678901C')
 INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R2', TIMESTAMP '2023-11-21 09:00:00', 1, 3, 'G789012345', '345678901C')
 INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R3', TIMESTAMP '2023-11-22 10:00:00', 0, 0, 'A123456789', '789012345G')
 INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R4', TIMESTAMP '2023-11-26 13:00:00', 1, 3, 'E567890123', '123456789A')
 INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R5', TIMESTAMP '2023-11-27 14:00:00', 1, 2, 'A123456789', '890123456H')
SELECT * FROM dual;

Section 2c. Four View Definitions
All views were tested on November 29th.

These four view definitions are designed to help library staff users of the database system in the
following key areas: unpaid fines, fines paid, lost resources and resource analytics.

Unpaid Fines View
The ‘Unpaid Fines’ view outputs all fines from overdue books; all active loans for which
Fine_Amount attribute greater than or equal to one.

Staff responsible for library finances will benefit from this view. Firstly, the view exhaustively
shows all the money that the library is expecting to receive from outstanding fines; a feature
which is useful for financial planning. Secondly, the view links each fine to a member’s name.
Staff can use this name (along with the unique Member_ID) to notify library members with fines.
(The database system does not store emails directly as this is beyond the coursework
specification. It is assumed that member emails can be accessed accurately outside of the
system when a member’s name and/or Member_ID is available.) Library staff will need to, a) let
members know they have been served a fine because of a specific overdue loan and, b) provide
them with the details on how to pay the fine. The system can be updated by a staff user to
represent a fine having been paid off by a) adding the paid off amount to the member’s
Payment_Received , and b) changing the Loan_Status of the active loan to inactive (in turn
causing it to be deleted from active loan. Thus, the paid-off loan will now no longer appear in the
unpaid fines view).

CREATE OR REPLACE VIEW UNPAID_FINES AS
SELECT L.LOAN_ID, L.RESOURCE_ID, L.COPY_NO, L.MEMBER_ID,
L.CHECKOUT_DATE_TIME, L.LOAN_STATUS, L.FINE_AMOUNT, M.FIRST_NAME,
M.LAST_NAME
FROM LOAN_ACTIVE L JOIN MEMBER M ON L.MEMBER_ID = M.MEMBER_ID
WHERE L.FINE_AMOUNT >= 1
ORDER BY L.FINE_AMOUNT DESC;

Output:
SELECT *
FROM UNPAID_FINES;

Fines Paid
The ‘Fines Paid’ view outputs the total fine amount paid by each member of the library; all
members with a Payment_Received attribute that is greater than or equal to one.

This view functions as a tool for helping record fine revenue and has applications for helping
finance staff with financial planning. This view can be updated periodically (every week, month
or quarter etc.) depending on preference and the totals can be recorded manually. Over time,
these recordings can be compared to calculate changes in fine amounts, both overall and per
member, over time. Therefore, finance staff will have access to information such as monthly fine
amounts, month-on-month percentage changes in fine collection, year-on-year percentage
changes in fine collection and future fine collection modeling.

CREATE OR REPLACE VIEW FINES_PAID AS
SELECT M.MEMBER_ID, M.FIRST_NAME, M.LAST_NAME, M.PAYMENT_RECEIVED
FROM MEMBER M
WHERE M.PAYMENT_RECEIVED >= 1
ORDER BY M.MEMBER_ID;

Output:
SELECT *
FROM FINES_PAID;

Lost Resources
The ‘Lost Resources’ view outputs all overdue loans which have remained overdue for a period
long enough for library staff to consider the resources lost.

If a library member loses or fails to return a resource to the library, it needs to be replaced so it
can be re-made available to the other library members. It is important lost resources are
replaced so that the library can more successfully fulfill its goal of efficiently circulating
resources among members. The amount of time allowed to elapse before a resource is
considered ‘lost’ adopted by many prominent libraries, including Queen Mary University of
London Library, is 6 weeks (35 days) (Queen Mary University of London, 2023).

The ‘Lost Resources’ view provides library staff system users with the Resource_ID, Copy_No,
Resource_Name, Resource_Type, Floor_No and Shelf_No of a lost resource copy so that the
library staff in charge of repurchasing can, a) correctly identify the resource copy that is in need
of replacement, and b) put the resource copy back in its correct position within the library once it
has been repurchased. Once the resource is repurchased and put back, it is assumed that the
library staff member will firstly change the Loan_Status from active to inactive; a process which
accordingly deletes the loan from Loan Active (though it is kept in Loan Archive), and thus
means the loan will no longer appear in the Lost Resources view. Secondly, the staff member
will mark the replaced resource copy as available using the Availability attribute in the Copy
entity.

CREATE OR REPLACE VIEW LOST_RESOURCES AS
SELECT LA.LOAN_ID, LA.RESOURCE_ID, LA.COPY_NO, LA.MEMBER_ID,
TO_CHAR(LA.CHECKOUT_DATE_TIME, 'DD-MM-YYYY HH24:MI:SS') AS
CHECKOUT_DATE_TIME,
 LA.LOAN_STATUS,
 EXTRACT(DAY FROM (SYSTIMESTAMP - LA.CHECKOUT_DATE_TIME)) -
LR.LOAN_PERIOD AS OVERDUE_PERIOD,
 LR.RESOURCE_NAME, LR.RESOURCE_TYPE, C.FLOOR, C.SHELF
FROM LOAN_ACTIVE LA JOIN LIB_RESOURCE LR ON LA.RESOURCE_ID =
LR.RESOURCE_ID
JOIN COPY C ON LA.RESOURCE_ID = C.RESOURCE_ID AND LA.COPY_NO =
C.COPY_NO
WHERE LA.LOAN_STATUS = 1 AND SYSTIMESTAMP - LA.CHECKOUT_DATE_TIME >=
INTERVAL '35' DAY;

Output:
SELECT *
FROM LOST_RESOURCES;

Resource Analytics View
The ‘Resource Analytics’ view outputs analytics related to the number of loans and copies of a
resource.

This view functions as an analysis tool through which library staff, especially those responsible
for purchasing resources, can check which resources are in highest demand. The resources
which are most in demand will have the highest values of Loans_Per_Copy. Purchasing extra
copies of these resources which are most in demand would likely increase the speed and
efficiency of resource circulation among library members. Hence, Loans_Per_Copy serves as a
useful analytic metric for the library staff database users to have available in view format.

This data is taken from Loan Archive rather than Loan Active because Loan Archive has holistic
coverage of loans both active and inactive; Loan Active only has active loans. Library-only
resources cannot be loaned out and therefore will not appear in this view.

CREATE OR REPLACE VIEW RESOURCE_ANALYTICS AS
SELECT
 LA.RESOURCE_ID,
 LR.RESOURCE_NAME,
 LA.COUNT_OF_LOANS,
 C.COUNT_OF_COPIES,
 CASE
 WHEN C.COUNT_OF_COPIES <> 0 THEN ROUND(LA.COUNT_OF_LOANS /
C.COUNT_OF_COPIES, 2)
 ELSE NULL -- Handle division by 0
 END AS LOANS_PER_COPY
FROM
 (SELECT RESOURCE_ID, COUNT(RESOURCE_ID) AS COUNT_OF_LOANS
 FROM LOAN_ARCHIVE
 GROUP BY RESOURCE_ID) LA
LEFT JOIN
 (SELECT RESOURCE_ID, COUNT(COPY_NO) AS COUNT_OF_COPIES
 FROM COPY
 GROUP BY RESOURCE_ID) C
ON LA.RESOURCE_ID = C.RESOURCE_ID
LEFT JOIN LIB_RESOURCE LR
ON
 LA.RESOURCE_ID = LR.RESOURCE_ID

ORDER BY LOANS_PER_COPY DESC;

Output:
SELECT *
FROM RESOURCE_ANALYTICS;

Section 2d. Twelve SQL Queries with Output Strings
All the queries were tested on November 29th.

-- 1. List all resources contained in the library. Output its class number, how many copies of it
are held by the library, and the location of the resource.

SELECT LR.RESOURCE_NAME,
 LR.CLASS_NO,
 COUNT(C.COPY_NO) AS COPIES_HELD,
 C.FLOOR,
 C.SHELF
FROM LIB_RESOURCE LR
LEFT JOIN COPY C ON LR.RESOURCE_ID = C.RESOURCE_ID
GROUP BY LR.RESOURCE_NAME, LR.CLASS_NO, C.FLOOR, C.SHELF
ORDER BY LR.RESOURCE_NAME;

-- 2. List all the student and staff members of the library.

SELECT LAST_NAME, FIRST_NAME, MEMBER_TYPE
FROM MEMBER
ORDER BY MEMBER_TYPE, LAST_NAME;

-- 3. List all current reservations. Check if the reserved item is passed on to the next person
when the reservation becomes unavailable.

SELECT *
FROM RESERVATION;

-- Select all members who made a reservation for the resource '345678901C':

SELECT *
FROM RESERVATION
WHERE
RESOURCE_ID = '345678901C';

-- Select only the member first in line for the reservation

SELECT *

FROM RESERVATION
WHERE
RESOURCE_ID = '345678901C' AND
RESERVATION_DATE_TIME = (
 SELECT MIN(RESERVATION_DATE_TIME)
 FROM RESERVATION
 WHERE RESOURCE_ID = '345678901C' AND RESERVATION_STATUS != 0
);

-- 4. List all active loans and their overdue status.

SELECT LOAN_ID, RESOURCE_ID, COPY_NO, MEMBER_ID, LOAN_STATUS,
FINE_AMOUNT,
CASE
WHEN LOAN_STATUS = 1 AND FINE_AMOUNT > 0
THEN 'Overdue'
ELSE 'Not Overdue'
END AS OVERDUE_STATUS
FROM LOAN_ACTIVE
ORDER BY FINE_AMOUNT DESC;

-- 5. List all previous loans by order of popularity.

SELECT LR.RESOURCE_NAME, COUNT(L.RESOURCE_ID)
FROM LOAN_ARCHIVE L
LEFT JOIN LIB_RESOURCE LR
 ON L.RESOURCE_ID = LR.RESOURCE_ID
GROUP BY LR.RESOURCE_NAME
ORDER BY COUNT(L.RESOURCE_ID) DESC;

-- 6. List all details of fines owed by members in order of fine amount.

SELECT M.MEMBER_ID, M.FIRST_NAME, M.LAST_NAME, M.MEMBER_TYPE,
L.RESOURCE_ID, L.CHECKOUT_DATE_TIME, L.LOAN_STATUS, L.FINE_AMOUNT
FROM LOAN_ACTIVE L
LEFT JOIN MEMBER M
ON L.MEMBER_ID = M.MEMBER_ID
WHERE L.FINE_AMOUNT > 0 AND M.SUSPENSION_STATUS=1
ORDER BY FINE_AMOUNT DESC, M.MEMBER_ID DESC;

-- 7. List library members who are suspended due to overdue loans or unpaid fines.

SELECT M.MEMBER_ID, M.FIRST_NAME, M.LAST_NAME, M.MEMBER_TYPE,
M.RESOURCES_LOANED, M.PAYMENT_RECEIVED, M.SUSPENSION_STATUS,
SUM(L.FINE_AMOUNT) AS TOTAL_OUTSTANDING_FINES
FROM MEMBER M
RIGHT JOIN LOAN_ACTIVE L

ON L.MEMBER_ID = M.MEMBER_ID
WHERE M.SUSPENSION_STATUS = 1
GROUP BY M.MEMBER_ID, M.FIRST_NAME, M.LAST_NAME, M.MEMBER_TYPE,
M.RESOURCES_LOANED, M.PAYMENT_RECEIVED, M.SUSPENSION_STATUS
ORDER BY SUM(L.FINE_AMOUNT) DESC;

-- 8. List how many resources are in each class

SELECT CLASS_NO, COUNT(RESOURCE_ID) AS NUMBER_OF_RESOURCES
FROM LIB_RESOURCE
WHERE CLASS_NO IS NOT NULL
GROUP BY CLASS_NO
ORDER BY CLASS_NO;

-- 9. List the Top 3 borrowers of all time:

SELECT M.MEMBER_ID, M.FIRST_NAME, COUNT(L.LOAN_ID) AS BORROWED_COUNT
FROM MEMBER M
JOIN LOAN_ARCHIVE L ON M.MEMBER_ID = L.MEMBER_ID
GROUP BY M.MEMBER_ID, M.FIRST_NAME
ORDER BY BORROWED_COUNT DESC
FETCH FIRST 3 ROWS ONLY;

-- 10. List all the resources which have available copies:

SELECT DISTINCT R.RESOURCE_ID, R.RESOURCE_NAME
FROM LIB_RESOURCE R
JOIN COPY C ON R.RESOURCE_ID = C.RESOURCE_ID
WHERE C.AVAILABILITY = 1;

-- 11. List all inactive members who have never loaned or reserved any resources:

SELECT M.MEMBER_ID, M.FIRST_NAME, M.LAST_NAME
FROM MEMBER M
WHERE M.MEMBER_ID NOT IN (
 SELECT DISTINCT MEMBER_ID FROM LOAN_ARCHIVE
 UNION
 SELECT DISTINCT MEMBER_ID FROM RESERVATION
);

-- 12. List the resources that have never been borrowed:

SELECT RESOURCE_ID, RESOURCE_NAME
FROM LIB_RESOURCE
WHERE RESOURCE_ID NOT IN(
 SELECT DISTINCT L.RESOURCE_ID
 FROM LOAN_ARCHIVE L
 JOIN COPY C ON L.COPY_NO = C.COPY_NO AND L.RESOURCE_ID = C.RESOURCE_ID
) AND LOAN_PERIOD > 0;

Section 2e. Testing Table Constraints (Optional)

Staff active loans may not exceed 10

INSERT INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME) VALUES
('A1', 'staff', 11, 0, 0, 'a', 'A')

Student_Staff active loans may not exceed 10

INSERT INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME) VALUES
('B2', 'student_staff', 11, 0, 0, 'b', 'B')

Student active loans may not exceed 5

INSERT INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME) VALUES
('C3', 'student', 6, 0, 0, 'c', 'C')

Suspension Status can only be 0 or 1

INSERT INTO MEMBER (MEMBER_ID, MEMBER_TYPE, RESOURCES_LOANED,
PAYMENT_RECEIVED, SUSPENSION_STATUS, FIRST_NAME, LAST_NAME) VALUES
('D4', 'student', 3, 0, 2, 'd', 'D')

Availability can only be 0 or 1

INSERT INTO COPY (COPY_NO, RESOURCE_ID, FLOOR, SHELF, AVAILABILITY) VALUES
(0, '1A', 0, 0, 2);

Loan Status in Loan Archive and Loan Active can only be 0 or 1

INSERT INTO LOAN_ARCHIVE (LOAN_ID, MEMBER_ID, CHECKOUT_DATE_TIME,
LOAN_STATUS, FINE_AMOUNT, COPY_NO, RESOURCE_ID) VALUES (23, 'B234567890',
TIMESTAMP '2023-12-01 00:00:00', 2, 0, 0, '123456789A')

Reservation Status can only be 0 or 1

INSERT INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R16', TIMESTAMP '2023-11-01 00:00:00', 2, 0, 'A123456789', '678901234F')

Remaining Chances may not exceed 3

INSERT INTO RESERVATION (RESERVATION_ID, RESERVATION_DATE_TIME,
RESERVATION_STATUS, REMAINING_CHANCES, MEMBER_ID, RESOURCE_ID) VALUES
('R17', TIMESTAMP '2023-11-02 00:00:30', 0, 4, 'B234567890', '789012345G')

Bibliography

Queen Mary University of London (2023) Lost or damaged books - Library Services. [online]

www.qmul.ac.uk, Available at: https://www.qmul.ac.uk/library/using-library-services/borrowing-

basics/lostdamaged-or-overdue-materials/ [Accessed 22 Nov. 2023].

Thibodeaux, C. (2023). 20 Surprising Facts About The British Library. [online] Facts.net.

Available at: https://facts.net/world/landmarks/20-surprising-facts-about-the-british-library/

[Accessed 29 Nov. 2023].

http://www.qmul.ac.uk/
https://www.qmul.ac.uk/library/using-library-services/borrowing-basics/lostdamaged-or-overdue-materials/
https://www.qmul.ac.uk/library/using-library-services/borrowing-basics/lostdamaged-or-overdue-materials/
https://facts.net/world/landmarks/20-surprising-facts-about-the-british-library/

